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Abstract—Performing link adaptation in multiple-input-
multiple-output orthogonal frequency division multiplexing
(MIMO-OFDM) systems is challenging due to the problem
of mapping the channel state information to a frame error
rate (FER) value. This difficulty comes from the spatial and
frequential selectivity of the channel, which makes the different
symbols in a codeword to observe different signal to noise ratio
values. Moreover, practical impairments like non-Gaussian noise,
different frame lengths, or channel nonlinearities can severely
affect the adaptation procedure in real scenarios. In this paper
we study different FER prediction techniques, which can be
classified in parametric, non-parametric and semi-parametric. We
evaluate the performance of the FER predictors under practical
impairments, and compare the achieved throughput when used
in conjunction with link adaptation algorithms.

I. INTRODUCTION

The increasing complexity of modern wireless communi-
cation systems makes their performance characterization a
difficult task. The use of simple metrics like average signal to
noise ratio (SNR) does not suffice to characterize systems with
complex channel coding operating under frequency and space
selective channels. Performance characterization (in terms of
frame error rate - FER) of the physical layer (PHY) of wireless
communication systems, or PHY abstraction, is crucial to
perform some tasks such as adaptive modulation and coding
(AMC) or system level evaluations without resorting to time-
consuming simulations.

Classic performance metrics used for single-carrier coded
systems [1], e.g. SNR, are no longer valid for multiple-
input-multiple-output (MIMO) orthogonal frequency division
multiplexing (OFDM) systems. Approaches using indicator
functions that map the set of SNR values (one for each carrier
and spatial stream) to an effective SNR metric (ESM) were
proposed as an alternative [2], [3].

One of the main criticisms to ESM is the impossibility
to incorporate practical impairments or different transmission
parameters (like codeword length or noise distribution) into the
FER prediction. In IEEE 802.11ac [4], for example, the frames
have variable length, which is going to affect the performance
of the system. For a constant channel state, longer packets will
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experience higher FER values [5]. Also, different noise distri-
butions will lead to different FER values, even with the same
SNR value. Although the assumption of Gaussian noise is
common in system design, a generalized Gaussian distribution
can model more accurately some communication scenarios
with Laplacian noise [6] or tropospheric impulse noise [7].
Learning-based approaches were developed to overcome these
problems [8]–[10]. Within the learning framework, the FER
prediction is based on observed FER samples, so the effect
of impairments is already captured in these measurements. In
this setting, the effect of having FER samples with different
codeword length or different noise distribution has not been
studied.

Previous work [2], [3], [8] focused on predicting the FER
from SNR information, without taking into account possible
changes in the noise distribution or frame length. In this paper,
we design FER predictors that are able to capture the effect
of these practical impairments. We review ESM and machine
learning FER predictors, and propose modifications to include
additional parameters in the prediction. We design a new semi-
parametric FER predictor by combining ideas from ESM and
machine learning. The results show that ESM loses accuracy
when practical impairments are present, and that the proposed
methods can be used to overcome this problem.

II. SYSTEM MODEL

Consider a point to point communication system where a
transmitter, equipped with T antennas, communicates with
a receiver, equipped with R antennas. Communication takes
place over an N -carrier OFDM physical layer. For every
carrier n = 1, . . . , N we denote by Hn ∈ CR×T the MIMO
channel, by nn ∈ CR the received noise vector, and by
xn ∈ CT the transmit signal. The received signal yn ∈ CR is

yn = Hnxn + vn n = 1, . . . , N. (1)

We restrict our analysis to transmitters using linear precoders
Fn ∈ CT×M to spatially conform the transmit symbols sn ∈
CM and receive equalizers Gn ∈ CM×R. The number of
spatial streams (NSS), also called the mode, is denoted by M .

We assume perfect channel state information at both trans-
mit and receive ends. Therefore, we can apply singular value
decomposition (SVD) precoding so

rn = GnHnFnsn+Gnvn = Λnsn+wn n = 1, . . . , N (2)



where Λn is a diagonal matrix including the first M singular
values of matrix Hn, and wn , Gnvn . Design of power
allocation is out of the scope of this work, and is assumed
to be included in Λn. The effect of SVD precoding is the
decomposition of the MIMO channel in a set of M scalar
channels, each one with an input-output relationship described
by

rn,i = λn,isn,i + wn,i. (3)

Therefore, each symbol sn,i passes through a flat fading
channel with an SNR value of γn,i =

|λn,i|2
σ2 . We define the

SNR vector γ as

γ = [γ1,1, . . . , γN,1, . . . , γN,M ]
T
. (4)

In this paper, we consider zero-mean generalized complex
Gaussian noise [11]. This generalized model allows to treat
Laplacian and Gaussian noise as special cases. The probability
density function of the real and imaginary parts of the noise
is

f (x) =
ρ

2βΓ (1/ρ)
exp

(
−
∣∣∣∣xβ
∣∣∣∣ρ) (5)

with β the scale parameter, and ρ the shape parameter.
Roughly speaking, the parameter ρ changes the rate of decay
of the tails of the probability distribution, and β changes the
variance for a fixed ρ. For example, if ρ = 1 the noise is
Laplacian, and if ρ = 2 the noise is Gaussian. The variance
of the complex noise is

σ2 =
β2

2

Γ (3/ρ)

Γ (1/ρ)
. (6)

The transmitted symbols sm,i are the result of processing
blocks of bits. Every block of bits is independently processed,
and constitutes a frame. The size L of the frame is variable,
and depends on the size of higher layer protocol data units. The
frame is constituted after performing forward error correction
(FEC) coding over blocks of bits, interleaving, and constel-
lation mapping. The transmitter selects the modulation and
coding scheme (MCS) from a discrete set C = {c1, . . . , cC}.

The problem we address in this paper is how to estimate the
FER associated to a channel state, MCS, ρ and L. Particularly,
for each MCS value, we are interested in a function

η (γ, ρ, L) (7)

that maps the set of SNR values γ, the frame length L and the
shape parameter ρ to a FER value. We focus first on the case
of Gaussian noise and fixed codeword length L to illustrate
two different approaches to FER prediction. We extend these
metrics in Section IV to deal with practical impairments.

III. FER PREDICTION TECHNIQUES

The involved structure of practical coding schemes makes
the analytical study of the FER function complicated. In
this paper, we classify the FER prediction approaches into
parametric and non-parametric. Although both approaches
need to use empirical FER results, the main difference is that
the parametric approaches require adjusting some parameters

following a mean square error (MSE) fitting, for example,
while non-parametric methods require adjusting the actual
model, usually by cross-validation techniques. In this section,
we review ESM and learning FER predictors.

A. Parametric FER prediction

Parametric techniques assume some functional relationship
between the SNR values and the FER, with some parameters
to be adjusted according to empirical measurements. This
functional relationship is usually expressed as the composition
of two different mappings, λ and γeff [3]

η (γ) = λ (γeff (γ)) . (8)

The first one is a mapping from the SNR vector γ to an
ESM γeff, defined as the SNR value of an AWGN channel
with the same FER as the fading channel under study. This
mapping is as a generalized mean that maps the SNR values
to a quality domain, averages the quality measurements, and
maps the value back to the SNR domain. If we denote by Θ (·)
the quality mapping, γeff is defined as

γeff (γ) = Θ−1

 1

M

1

N

N∑
i=1

M∑
j=1

Θ (γi,j)

 . (9)

In this paper, we consider the Exponential Effective SNR
metric (EESM) due to its analytical tractability and good
accuracy. For example, the WiMAX forum recommended the
EESM as the default method for FER prediction [12] in IEEE
802.16e. In EESM, the quality mapping is

Θ (x) = e−βx (10)

with β the parameter to be adjusted with empirical informa-
tion.

The second mapping is a function from the SNR domain
to the FER domain. More precisely, λ (x) is the FER of
an AWGN channel with SNR x. This mapping is usually
performed by the use of look-up tables (LUT) containing
simulation results for the AWGN channel. To make a fair
comparison with the non-parametric approach, which does not
assume any prior FER information in AWGN, in this paper
we consider a functional relationship between SNR and FER
in AWGN. Particularly, we consider a generalized sigmoid
function

λ (x) =
1

(1 + exp (b (x−m)))
1/ν

(11)

with ν, b and m to be fitted to empirical measurements.
We verified by simulations that the performance of the FER
predictor with the sigmoid function (11) and a LUT is similar.

B. Non-parametric FER prediction

We follow some ideas from [8], and propose to use learning-
inspired methods to perform FER prediction. Based on some
past samples (the training data), a regressor tries to estimate
the function value (the FER in our case) in a different set of
samples (the test data). Note that our approach differs from [8],
[9], where the objective was to discriminate whether the FER



is above or below a certain threshold, instead of predicting the
FER value.

If we assume ideal interleaving, the FER is going to be
invariant to permutations in γ, so the ordered SNR vector γ̂ =
Pγ suffices to obtain the FER performance. P is a permutation
matrix such that [γ̂]i ≥ [γ̂]i+1 ∀i.

The regression problem exploits the information in a set
of training data {(γ̂i, yi)}Si=1, consisting of duples of SNR
of different channel realizations γ̂i and its associated FER
value yi. The objective of the regression function is to obtain
the FER y0 associated to a different channel realization γ̂0.
This regression problem involves two steps: dimensionality
reduction and regression.

We select a reduced dimension feature vector f i from the
data γ̂i to avoid the curse of dimensionality [13]. We restrict
our study to affine operations, so f i = R (γ̂i − r) , with R a
dimensionality reduction matrix, and f i ∈ RD. We study the
following dimensionality reduction techniques

1) Subset selection This method simply selects some en-
tries of vector γ̂i. Thus, r = 0 and R is a sparse
matrix with D rows taken from of the canonical base
of RNM . Although the subset of selected entries could
be optimized to gain some performance, in this paper we
reduce our analysis to matrices R selecting equidistant
SNR positions, including the first and last ones.

2) Subset selection with feature scaling This method
selects some entries of the vector γ̂i, but performs first
an affine transformation to make the different entries
of γ̂i zero mean and unit variance. We define the
empirical mean and variance of the entries of {γ̂i}Si=1

as µk , 1
S

∑S
i=1 [γ̂i]k and σ2

k , 1
S

∑S
i=1 |µk − [γ̂i]k|

2.
The dimensionality reduction operation is

f i = RΣ (γ̂i − µ) (12)

with Σ a diagonal matrix with entries [Σ]k,k = 1√
σ2
k

,

µ = [µ1, . . . , µNM ]
T , and R a selection matrix.

3) Principal component analysis Principal component
analysis (PCA) estimates the mean and covariance
matrix of the samples as µ = 1

S

∑S
i=1 γ̂i, C =

1
S

∑S
i=1 (γ̂i − µ) (γ̂i − µ)

T . The feature set is obtained
by projecting the training set onto the dominant eigen-
modes: let C = UΛUT be the eigendecomposition
of C with the eigenvalues sorted in decreasing order,
and let Ũ be the matrix containing the first D columns
of U. The dimensionality reduction operation is f i =

Ũ
T

(γi − µ) .

After dimensionality reduction is performed, we build a
regression function based on the reduced dimension train-
ing data. The reduced dimension training data is the set
{(f i, yi)}Si=1. Although there are a wide variety of non-
parametric regression methods, we choose local linear regres-
sion (LLR) for its simplicity. LLR approximates the function
around a point f0 by a linear model.

ŷ0 = α+ βT f0. (13)

The parameters α and β are obtained from weighted least
squares (WLS) fitting. The weights of the WLS problem
depend on the distance between f0 and the different training
samples f i. The WLS problem is

min
α,β

S∑
i=1

Kλ (f0, f i)
∥∥∥α+ βT f i − yi

∥∥∥2 (14)

where Kλ is a kernel function parametrized by the value λ.We
use the radial basis function kernel:

Kλ (x,y) = exp

(
−‖x− y‖2

λ

)
. (15)

The value of λ determines a point in the bias vs variance
tradeoff [14].

IV. INCLUSION OF PRACTICAL IMPAIRMENTS

The methods described in the previous section perform FER
prediction based only on SNR information. In real systems,
however, there are other factors that impact the performance of
a receiver. In this section we describe how to include practical
impairments in parametric and non-parametric techniques, and
present a new semi-parametric approach.

A. Parametric FER prediction

Parametric approaches are difficult to adapt to include
practical impairments, as a functional relationship between
the FER and the practical impairment has to be obtained or
approximated. In the case of variable frame length, for exam-
ple, previous work assumed the availability of a different FER
predictor for every length [3], [5]. In this paper, we assume
only one FER predictor for every MCS, so the parametric FER
predictors do not take into account the practical impairments.

B. Non-parametric FER prediction

The non-parametric FER prediction techniques offer a flex-
ible way to deal with practical impairments, since they do
not assume any functional relationship between the FER and
the channel state. Thus, we can define an extended channel
state that includes the practical impairment as part of the
channel state. Assume that we have a training set where
each sample is associated to a channel state vector and to
a practical impairment vector. Denote pi , [pi,1, . . . , pi,P ]

T

as the practical impairment vector of the i-th sample. The
training set is a set of tuples {γ̂i,pi, yi}Si=1. The extended

channel state vector is defined as ei =
[
γ̂Ti ,p

T
i

]T
. With this

definition, we can redefine our training set as {ei, yi}Si=1 and
apply the dimensionality reduction methods in Section III-B.

The inclusion of practical impairments in the channel state
vector increases the dimensionality of the problem and, there-
fore, makes the use of dimensionality reduction even more im-
portant. In the following section, we design a semi-parametric
approach that combines ideas from ESM and machine learning
approaches to avoid the problem of dimensionality reduction.



C. Semi-parametric FER prediction

Parametric and non-parametric methods have some advan-
tages and drawbacks. On the one hand, parametric methods
use simple functional relationships between FER and SNR,
work with a relatively low number of empirical samples, but
are not flexible to accommodate practical impairments. On the
other hand, non-parametric methods can deal with practical
impairments in a straightforward manner, but need a large
number of training samples to include additional features.

One key observation is that ESMs are designed to be good
dimensionality reduction techniques, i.e., ideally the effective
SNR γeff (γ̂) is a sufficient statistic for FER estimation. Thus,
we propose to use an alternative extended channel state vector,
defined as

ei =
[
γeff (γ̂i) ,p

T
i

]T
. (16)

The estimation process involves two steps. in the first one,
the optimum ESM parameter β is obtained from the training
samples without taking into account the practical impairments.
In the second one, the value of β is used to build the extended
channel state vector (16), and an LLR estimator is trained
following the procedure in III-B. Dimensionality reduction
is not performed (the number of practical impairments is
expected to be small, and we have already reduced the size of
the SNR vector to one), but feature scaling might be necessary.

V. SIMULATION RESULTS

We evaluated the described FER prediction methods for a
MIMO-OFDM system with a 4-antenna transmitter-receiver
pair and 52 carriers, emulating the PHY of IEEE 802.11ac
[4]. The MCS and its associated rates can be found in [15].

We performed different experiments to compare the per-
formance of the FER prediction methods. First, we compared
parametric and non-parametric methods when no practical im-
pairments are present. We generated 6000 different realizations
with SNR values between 0 and 30dB, and a 4-tap MIMO
channel with Gaussian entries in the time domain. The frame
length was set to L = 1024, and the noise distribution was
Gaussian. We simulated the transmission over the channel with
QPSK modulation, rate 3/4 convolutional code, and 4 spatial
streams. We divided the 6000 data points into two different
parts: the training data, comprising 80% of the points, and the
test data, with 20% of the points. We trained our regressor
with the 4800 samples, and tested it against the remaining
1200. We compared the ESM FER predictor with LLR with
the 3 different types of dimensionality reduction: LLR-PCA
(dimensionality reduction with PCA), LLR-SS (dimensionality
reduction with subset selection), LLR-SS-SC (dimensionality
reduction with subset selection and feature scaling). Also, we
evaluated LLR-SS and LLR-SS-SC with the SNR values in
decibels instead of natural units.

We selected the kernel parameter λ following a K-fold
cross-validation approach [14], with K=4. This implies that
every iteration in this cross-validation used 3600 samples to
train the regressor and 1200 to test it. After selecting the value
of λ, the complete training set was used to train the LLR.

In Figure 1 we show a plot of the FER estimation MSE as a
function of the dimension of the feature vectors f i. ESM MSE
is plot as a constant for comparison. We see that LLR-SS with
SNR in dB outperforms ESM for number of features above 8.
LLR-SS with SNR values in linear scale performs worse than
ESM, and PCA offers a poor performance.

We performed similar experiments introducing practical
impairments in the system. In all the cases, the division of
the available samples into training, test and cross validation
sets was the same as in the no-impairments case. In Figure 2
we show the results for different frame length. We generated
9000 realizations with the same channel and SNR distribution
as before, Gaussian noise, but now varying the frame length
between L = 128 and L = 16386. In this case, the estimation
accuracy of ESM is hindered by the lack of information of the
frame size. The inclusion of practical impairments reduces the
accuracy of ESM in almost one order of magnitude. LLR with
SNR in dB with L as a feature outperforms ESM, and the
proposed semi-parametric approach (LLR-ESM(dB)) offers
the best performance. The semi-parametric approach is built as
a 2-feature LLR, with the ESM in dB, i.e., 10 log10 (γeff (γ))
with γ in natural units.

A similar behavior is shown for the generalized Gaussian
distribution in Figure 3. We generated 12000 channel realiza-
tions with a constant frame length of L = 1024 but varying the
ρ parameter of the Generalized gaussian distribution between
0.1 and 4. In this case, the feature vector contains the ρ value
of the corresponding channel.

In Figure 4 we show the result of applying parametric and
semi-parametric approaches to the problem of link adaptation
with variable codeword length. A FER predictor was built for
every MCS, and the MCS with a higher throughput meeting a
FER constraint of p0 = 0.1 was selected. The frame length was
randomly selected between 128 and 13684 bits. The proposed
semi-parametric approach offers up to 11% throughput gain
for moderate SNR values. Also, it was observed that ESM
did not meet the FER constraint in some cases due to the
FER prediction inaccuracy. This results shows the advantage
of taking into account practical impairments in link adaptation.

VI. CONCLUSIONS

In this paper we compared different approaches for FER
prediction when practical impairments are present in the
system. Machine learning FER estimators can incorporate the
practical impairments as additional features, while traditional
parametric approaches are less flexible. Classical ESM loses
accuracy in the presence of different frame length or noise
distribution. We proposed a semi-parametric approach that
combines the good properties of both parametric and non-
parametric methods. The results show the importance of
incorporating practical impairments into the FER predictors
by the use of non-parametric or semi-parametric methods.
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Fig. 1: FER prediction without practical impairments.
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Fig. 2: FER prediction with variable frame length.
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Fig. 3: FER prediction with different noise distribution.
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Fig. 4: Link adaptation throughtput for variable frame length.
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